

2013

Project Team 11

Qichao Hua
Ethan Johanson
Steve King
MengTing Yang
Yujie Zeng

Quality Assurance Plan

July 28, 2013

PhyloDex

1

Table of Contents
Revision history ... 2

Internal Testing Procedure: ... 4

Deadlines: .. 8

User Testing: ... 10

Integration: .. 10

Size and Complexity: .. 11

Quality Assurance: .. 15

2

Revision history

Revision Status Publication/Revision
Date

By

1.0 Created June 10, 2013 Ethan
Johanson

1.1 Minor Editing + Formatting June 14, 2013 Ethan
Johanson

1.2 Adjustments to match current
implementation of system

June 23, 2013 Ethan
Johanson

1.3 Editing based on feedback and updates to
reflect version 2 progress

July 13, 2013 Ethan
Johanson

1.4 Included Unit Test table July 13, 2013 Daniel Hua

1.41 Added more Unit Tests July 14, 2013 Steve King

1.5 Updated for current version, User Testing,
Size & Complexity, Integration

July 14, 2013 Ethan
Johanson

1.6 Included information on User Testing

Updated gitStats

July 28, 2013 Ethan
Johanson

3

4

Internal Testing Procedure:
As our application is relatively straightforward and does not do a lot of processing, we will not
have any automated testing. Our testing shall be performed by team members (lead tester Ethan
Johanson) on a variety of use cases to ensure that all functional requirements are operational in
new build candidates. The test team is notified when a new functionality has been committed and
pushed to GitHub, at which point the tester would pull in the new build and run through use cases
of the new feature to ensure that the modification worked on a fresh copy of the project, and that
regression testing was then also performed to ensure that previously operational functionality had
not been compromised by the new additions. The tester would then email the rest of the team that
said new functionality had been incorporated and they should update their project to the new
build to ensure their work was on an up to date version.

Test results will be archived in a Google Spreadsheet accessible to the entire team online to check
builds and understand what revision a potentially required rollback may be targeted to. Specific
bug reports including bug description, assessed severity, and method of reproducibility, will be
stored in a secondary document for the developers to reference. If deemed necessary, reports may
also contain screenshots or videos of the bug. Testing itself will be targeted to actual iOS devices
including iPhones and iPod Touch, especially as this is the only environment to test aspects like
the camera, but for small build updates that are more fixes to design than function, simulator tools
for the iPhone/iPod touch provided as a part of XCode may also be used to assess modifications.

The current suite of unit tests is as follows:

Unit Name Testing
Features

Sub-testing
Features

Test Description Expected Result

Tab Bar Tap on
"Phylodex"

 User selects the "Phylodex"
option on the tab bar

The application should switch
to "Phylodex" view

Tap on
"Search"

 User selects the "Search"
option on the tab bar

The application should switch
to "Search" view

Tap on
"Capture"

 User selects the "Capture"
option on the tab bar

The application should switch
to "Capture" view

Tap on
"Share"

 User selects the "Share"
option on the tab bar

The application should switch
to "Share" view

Phylodex Edit User taps on the "Edit"
button

The "Delete" icons should
appear when edit is tapped

 User taps on a table cell's
Delete icon

The cell's image should shift
position and a confirm delete
button should appear

Delete User taps on a cell's confirm
delete button

The cell's data should be
removed from the database
and the cell removed from
the view

5

Tap on
Animals

 User taps on a specific cell The application should shift
to the Species Detail View for
that entry

Species
Detail View

Navigation
Bar
"Phylodex"

 Check if the view goes back
to "Phylodex" view

Goes back to "Phylodex"
view

Navigation
Bar "Save"

 Check if all changes have
been saved

All changes have been saved

Empty
"Name"
saving

Check if user type without
animal name, the alert
window shows up

Alert window shows up

"Name"
Textfield
capable
texting

 Check if user type in the
"Name" textfield and
corresponding characters
shows on the textfield

Characters shows on the
textfield

Keyboard
showup

 Check if user tap on "Name"
textfield, keyboard shows up

Keyboard shows up

Keyboard
resign

 Check if user tap on
background area when
keyboard shows up, the
keyboard resign

Keyboard resign

"Habitat"
Disclosure
Indicator

 Check if user tap on
"Habitat" disclosure
indicator, a wheel of habitat
options poping up for
choosing

Habitat options pop up

"Save"
Button

Check if user tap on "Save" in
"Habitat" disclosure, the row
that user chosen will be
saved as "Habitat"

The row that user chosen will
be saved as "Habitat"

"Cancel"
Button

Check if user tap on "Cancel"
in "Habitat" disclosure, the
row that user chosen will not
be saved

The row that user chosen will
not be saved

"Feature"
Disclosure
Indicator

 Check if user tap on
"Feature" Disclosure
Indicator, a wheel of feature
options pop up for choosing

A wheel of feature options
pop up for choosing

"Save"
Button

Check if user tap on "Save" in
"Feature" disclosure, the row
that user chosen will be
saved as "Feature"

The row that user chosen will
be saved as "Feature"

6

"Cancel"
Button

Check if user tap on "Cancel"
in "Feature" disclosure, the
row that user chosen will not
be saved

The row that user chosen will
not be saved

Image
cropping

 Check if user tap on image
for any animal, the view goes
to "Image Cropping"

The view goes to "Image
Cropping"

Cropping Check if user doing cropping
tap on the image, it's
corresponding tools actally
works

Cropping tools work

"Save"
Button

Check if user tap on "Save"
button, the image that
cropped saved by the
application

The image that cropped
saved

"Cancel"
Button

Check if user tap on "Cancel"
button, the image that
cropped will not be saved by
the application

The image that cropped will
not be saved

Capture "Capture"
Icon

 Check if user tap on
"Capture" icon, an image will
be token by the application
and ask user to retake or use

An image will be token by the
application and ask user to
retake or use

"Retake"
Button

Check if user tap on "Retake"
button, the image previous
token will not be saved and
goes back to "Capture" mode
again

The image previous token
will not be saved and goes
back to "Capture" mode
again

"Use"
Button

Tap on "Use" button to
check if the view back to
"Phylodex" view and save
the image to local database

The view back to "Phylodex"
view and save the image to
local database

"Cancel"
Button

 Check if the view goes back
to "Phylodex" view

Go back to "Phylodex" view

Search "Search"
Textfield
capable
texting

 Check if user type in the
"Name" textfield and
corresponding characters
shows on the textfield

Corresponding characters
shows on the textfield

Empty
search

Check if "Name" textfield is
empty, alert window shows
when the user click on the
"Search" button

Alert window shows

Keyboard Check if user tap on "Name" Keyboard shows up

7

showup textfield, keyboard shows up
Keyboard
resign

 Check if user tap on
background area when
keyboard shows up, the
keyboard resign

Keyboard resign

Network
connection

 Check if network is not
available, alert window
shows

Alert window shows

Tab on
"Search"

Get results Check if there are some
result(s) returned by the
server, the view goes to
"Search Result"

Go to "Search Result"

Get no
result

Check if there is no result
returned by the server, alert
window shows

Alert window shows

Tab on
"Clear"

 Check if the "Name" textfield
is cleared

The "Name" textfield is
cleared

Search
Results

Navigation
Bar
"Search"

 Check if the view goes back
to "Search" view

Go back to "Search" view

Tab on
search
result

 Check if the view goes to
"Searched Result" view

Go to "Searched Result" view

Searched
Result

Navigation
Bar back

 Check if the view goes back
to "Search Results" view

Go back to "Search Results"
view

Image
show

Does have
image

Test Cases: Mallard,
American Black Bear, Golden
Eagle, Sea Otter

The corresponding image of
the animal shows

Does not
have image

Test Cases: Mountain Goat,
Horse

The default image shows

Share Database
Access

Initial load User enters the application's
Share mode

The displayed view should
contain all of the current
entries in the user's database

Response to
database
changes

User returns to Share mode
after removing or adding an
entry to the database

Additions and removals
should be reflected in the
content displayed

Selection User taps on an unselected
entry in the collection view

The tapped entry should gain
a highlighted border and be
added to a selection array

 User taps on a selected entry
in the collection view

The tapped entry should lose
its highlighted border and be
removed from the selection
array

8

Send to
eMail

email
launch

User taps on the send
selected button in the
navigation bar

An eMail composer view
should appear with the
details of the currently
selected items and attach
their associated images

email
composition

User adds content to the
email message body, subject,
address fields, etc

The eMail composer view
should behave as expected of
the default email view

email
dismissal

User completes their email
action through send, delete
draft, or save draft

The ShareView should
retrieve the type of dismissal
to act upon if required.

Deadlines:
Scheduled final testing of builds has been targeted for 3 days from due dates of assignment
builds. This allows for a reasonable amount of time for bug location and fixing, while
maintaining significant initial development time. If the developers run into delays and require
more time, testing can be done the following day, but no later. If development goes smoothly and
testable builds are available earlier, the validation and verification testing can be moved up to
match these earlier available builds and provide quicker feedback for further revisions. A chart of
the current deadlines past and future is included in fig 1.

Phase 1’s testing involved tests on basic application stability, the ability of the main table view to
load and display data and send information about selections to another view, the functionality of
the modal tab bar, functionality of the navigation bar, and basic loading, retrieval, and display of
searches.
Phase 2’s tests include all of phase 1’s tests as regression testing, but also add a variety of new
cases for new functionality in phase 2. These include tests related to the use of CoreData to store
user information, with tests on addition and deletion of items from the database and updates in the
applications view to reflect the changed database states, the selection and export of data in the
added share view, the use of the hardware camera to create new entries, and the inclusion of more
comprehensive details in the detail view. Tests on the revised and expanded criteria for the search
function are also included.
Phase 3’s tests again included regression testing on features from phase 1 and 2, as well as more
tests on different sharing export options, and more complex database operations.

9

Fig 1. Planned Schedule of development and testing

10

User Testing:
For phase 3 of the project, user testing was important to incorporate. For these tests, our
target was to make revisions from the previous version in order to provide a better user
experience. To accomplish this, we have incorporated user testing early on using the final
previous version, and incorporated that feedback into the development of revision 3. As these
user tests were designed to primarily target only affect design and application flow rather
than backend data, feedback was fairly straightforward to incorporate and adjust for than any
issues found during internal functional testing. The first phase of user testing was conducted
at SFU Surrey on July 19, and asked our users (1 younger sibling, 1 sibling’s friend, 1 peer in
the Education program, and 1 general peer not in education but that has worked with youth in
Scouting) to perform a few use cases and observed their interaction with the application. The
older test subjects filled out a brief questionnaire, which were afterwards compared against
one another to note similar issues, while the children were interviewed in a more casual
format. Primary findings from this phase found that version 1 was quite straightforward to all
target user demographics. The children noted the version of Share at the time seemed like ‘a
pretty boring email’, which was then accounted for by adding card formatting. All 4 users
wondered why there was an extra screen to go through to edit entries. This was incorporated
into the redesign for version 3. 1 child and the Scouting peer used the search view to look up
the scientific names of various animals to enter. The second user testing was done on July 27,
again at SFU Surrey with a near final version of the app, though this time outdoors at the
nearby Holland Park. Outdoor testing was conceived to verify that the UI was able to be read
as easily as any other application in the glare of the sun as it had been in our indoor tests. The
test subjects kept the sibling and the education student peer, though the others were unable to
match schedules and a second friend of the sibling was tested. Again users were tasked with
tasks including taking a picture of a squirrel or bird and adding it to their library, looking up
information on a specific animal, and sending their captured animal and one other that they
found interesting to a friend. Feedback from this session was incorporated into some final
patches and hotfixes, largely to clarify some UI elements such as adding a size reference
diagram to the scale option, abstracting diet to just type and not food chain level, and shifting
the climate fields to toggles rather than manual entries. Unfortunately not all user
management features were able to be tested.

With the older participants, a think out loud approach was used in order to gain greater
insight into the user’s thought process in searching for how to use the application, while the
younger testers were instead, as noted earlier, given a casual post interview asking recall
questions about how they used it. This is due to the distraction of think out loud likely being
more unfamiliar and confusing to younger users. Our testing team also incorporated asking
the child test users to explain how to perform tasks they performed with the application to
each other. If this task is relatively simple for them, it can show that they have easily
mastered and understood the application.

Integration:
Our application, as it aims to follow the iOS Human Interface Guidelines, largely provides a
small variance of functionalities in favour of targeting a smaller number of functions and
executing them strongly. As such, there is comparatively little integration to perform in
comparison to some larger scale software products. This does not mean that there is no
integration testing in our application however, as our version control system is strongly

11

supported by integration testing alongside unit testing. Our project development runs at three
core levels. The first level, the Master branch, is the main release branch and only updated on
significant milestones after testing. This branch is known stable. The second level branch is
develop, where integration takes place. The third level is the feature branches, which are
forked off of a known stable master branch, or in necessary cases, off of develop. New
features are created and designed on these feature branches. Once they are deemed feature
complete, a pull request is filed to merge into develop. The responsible tester merges the
branches and performs unit, integration, and regression testing on the merged version to
ensure that the features are working together properly before pushing this merged version to
become the new current develop. Once all of a phase’s integration is complete, develop is
pushed to master. The first major integration that the project went through in phase 1 was
combining multiple modal views into a single application using the iOS tab bar. The second
major integration was integrating the new CoreData database backend and ensuring all
features using that database properly update and reflect changes to that database. Other minor
integrations include data model adjustments and picture loading and search web access
remaining asynchronous and not blocking the rest of the application.

Size and Complexity:
Beyond the values visible to the team within XCode and Github, we will not have any special
software to measure size or complexity of our project. The only third party tool utilized is the
tool gitStats, though this application simply takes stats from the GitHub repository and makes
them more legible. The values that these tools provide may be archived in a document based
on build however in order to be able to create charts of the data to show progress or notice
overcomplexity. Our code should also aim to match the UML requirements our developers
planned for, and said UML document will also be reflected to match new class structures if
need be.

The statistics and analysis provided by gitStats are not entirely perfect stats, as there are
various elements that have contributed to some ambiguity in the data. These problems
include the fact that the analysis tool only analyzes the Master branch, some file/line
count stats do not use only code files, but rather all project files including images, the
various feature branch merges resulting in some authoring credit being mixed up, and a
major refactor around the release of version 1 of the project causing some early statistics
to be lost. Nevertheless, the stats that are provided by the analysis are better for insight
than having none at all.

Current Project Statistics:
 [BOLD is new for version 3, non bold is version 2 values]
Total Files
118
Total Lines of Code
18379 (21189 added, 2810 removed)
Total Commits
71 (average 5.9 commits per active day, 3.2 per all days)
Authors

http://gitstats.sourceforge.net/

12

7 (average 10.1 commits per author
Average file size
37249.33 bytes

Total Files
162
Total Lines of Code
49467 (59970 added, 10503 removed)
Total Commits
111 (average 6.9 commits per active day, 3.1 per all days)
Authors
7 (average 15.9 commits per author
Average file size
41072.96 bytes

Team Member Commits Lines Added Lines Removed
Ethan Johanson 66 (59.46%) 11369 9611
Daniel Hua 13 (11.71%) 1990 594
Steve King 20 (18.02%) 39007 650
Yujie Zeng 12 (10.81%) 9780 1842
Total 71 21189 2810

Fig 2. Contributions by Team Member
Analysis error resulted in MengTing Yang contributions to be

Merged with Yujie Zeng’s. High disparity in commit percentage due
to Ethan Johanson being responsible for management of the analyzed

Master branch.

13

Fig 3. Contributions by Team Member since phase 1

GitHub account logging in client vs WebApp resulted in name discrepencies
KettleCorn = Ethan Johanson, phylodex = Steve King,

Artha[Zeng] = Yujie Zeng+MengTing Yang

Extension Files (%) Lines (%) Lines/File
 9 (5.56%) 831 (1.68%) 92

h 39 (24.07%) 1174 (2.37%) 30

m 41 (25.31%) 5047 (10.20%) 123

mode1v3 1 (0.62%) 1357 (2.74%) 1357

pbxproj 1 (0.62%) 915 (1.85%) 915

pbxuser 1 (0.62%) 91 (0.18%) 91

pch 1 (0.62%) 15 (0.03%) 15

14

plist 8 (4.94%) 220 (0.44%) 27

png 31 (19.14%) 12702 (25.68%) 409

strings 2 (1.23%) 4 (0.01%) 2

txt 2 (1.23%) 64 (0.13%) 32

xcbkptlist 4 (2.47%) 176 (0.36%) 44

xcscheme 6 (3.70%) 576 (1.16%) 96

xib 16 (9.88%) 39730 (80.32%) 2483

Fig 4. File Count Breakdown by Type
*PNG line count not included in percentage

Fig 5. File Count over Time

Fig 6. Line Count over Time

15

Quality Assurance:
Our development team will be reporting frequently on their progress and ability to meet
requirements to the project manager, as will our testing and documentation teams. Testing
will be kept partially separated from development so as to avoid conflicts where testers are
also developers and may leave bugs unreported in order to save themselves work. We will
also be meeting regular milestones (assignment dates) to check in our total progress and
ensure that the project is on the right track. All test report archives for builds and bug reports
will also be made available to the whole team to assess and be aware of.

	Revision history
	Internal Testing Procedure:
	Deadlines:
	User Testing:
	Integration:
	Size and Complexity:
	Quality Assurance:

